韩申生教授工作室

作者:王李金 时间:2021-05-25 点击数:

首席教授:韩申生教授

团队成员:

韩申生,工作室首席教授,研究员,博士生导师。中国光学工程学会理事会成员,中国物理学会量子光学专业委员会委员、中国电子学会量子信息专业委员会委员等;《红外与激光工程》、《光学学报》及《量子光学学报》编委。近年来,研究方向逐步转向基于光场高阶关联的强度关联成像(鬼成像)及其与现代信息理论的结合与应用研究,发展强度关联遥感成像新体制,从光学及微波成像基本原理层面上突破传统成像技术在成像分辨率和图像获取效率等方面的原理制约。所领导的课题组是国际上激光鬼成像雷达(GISC Lidar)和鬼成像相机(GISC Camera)技术概念的提出者和主要技术引领者,此外还将强度关联成像的应用范围推广到了X光波段(X-ray Fourier-transform Ghost Imaging)。

司徒国海,工作室双聘教授,研究员,博士生导师。国家高层次海外引进人才,中科院计算光场成像创新交叉团队负责人。近年来致力于发展基于人工智能的计算光学成像技术,解决在强散射、弱光照等极端环境中的成像问题,取得多项重要研究成果,在Nature PhotonicsLight Sciences & ApplicationsOptica等顶级期刊上发表具有重要影响力的学术论文80余篇,被引用5300次;先后在近30个重要国际学术会议上作大会\主旨\辅导\邀请报告,曾获年国际Holoknight奖、中国科学院上海分院第六届杰出青年科技创新人才奖和“全国归侨侨眷先进个人”称号,任OSA Robert E. Hopkins领袖奖、SPIE Dennis Gabor衍射光学奖评审委员会委员。

喻虹,工作室双聘教授,研究员,博士生导师。研究方向为高分辨X光计算成像及信息处理技术,开展在生物医药、芯片检测、深空导航等领域的应用研究,完成了国际首次X光强度关联成像(X-ray Fourier-transform Ghost Imaging)显微实验演示,研制了小型X光强度关联成像纳米显微仪样机。作为负责人承担国家基金委重大仪器项目、国家重点研发计划、国家科技攻关专项、国家自然科学基金等多项研究课题,在Physical Review Letters等国际高水平期刊发表论文30余篇,授权发明专利10余项,获评中科院重大科技基础设施重要成果中国光学十大进展等奖项,相关成果被欧美学术媒体广泛报道,担任Nature Communications等期刊审稿人。

胡晨昱,工作室博士后,博士毕业于中科院上海光机所,期间赴加州伯克利大学应用数学系访问。主要研究方向为光学成像系统成像能力的信息理论描述、鬼成像系统调制光场优化、鬼成像系统图像重构算法设计等,在Photonics Research, Optics Express, Physical Review A等国际一流学术期刊发表论文10余篇,担任Optics ExpressJOSA A等期刊审稿人。

高金铭,工作室博士后,合作导师为司徒国海研究员。长期从事光学设计和光学精密测量研究,发表高水平学术论文4篇;授权发明专利3项。目前,主要聚焦于深度学习计算成像、超构表面设计和光学精密测量领域的研究。在可解释物理模型的神经网络构建、超构原子设计、相位函数设计、深度学习计算成像、显微干涉、波前传感和精密装调等理论与技术方面具有良好的学术基础。

郑珊珊,工作室博士后,博士毕业于中国科学院上海光机所。主要研究方向为计算光学成像和光学信息处理,主要针对复杂介质中的散射传输机理、散射成像及非视域成像技术展开研究,包括基于相空间光学的散射机理研究、基于深度学习的2D/3D散射成像方法研究等。至今已在Photonics ResearchOpto-Electronic Advances等期刊发表论文近10篇,授权发明专利1项。

联系人:胡晨昱                联系方式:0571-8608736717621704755


工作室简介:

1)工作室成立背景历程;

自上世纪中叶信息论诞生以来,从信息论的视角理解、研究、优化光学成像系统是光学成像领域中的一个重要研究方向。由于传统光学成像系统大都是以物面到像面“点到点”的映射模式进行图像信息的采集,缺乏对图像信息的编解码功能,这使得基于信息论的传统光学成像研究更多的具有理论上的意义,对实际应用系统的优化设计更多的是起到锦上添花的作用,难以在成像功能上有实质性的突破。近年来,随着现代光场调控技术和基于光场高阶关联的新概念鬼成像技术的突破性进展,目前已经能够在鬼成像过程中利用可控的光场时空涨落对目标图像进行编码,结合现代数字光电探测技术,鬼成像实现了传统光学成像技术中所缺乏的图像信息调制-解调功能,这对从信息论的角度理解和优化鬼成像系统提出了迫切的需求和挑战。另一方面,在若干复杂环境场景中,传统成像模式所需要的“点到点”图像信息映射条件由于散射介质或障碍物的存在而无法被满足,此时无法直接对目标场景成像。以信息论的视角来理解,此时的光学传输信道受到了严重的干扰,因此,如何在这种复杂信道条件下通过设计系统以提取出目标图像信息,也是从信息论角度分析和优化光学成像所要解决的重要问题。

围绕信息光学成像这一核心研究方向,工作室前期在鬼成像系统光场信息压缩感知模式优化、透过复杂信道成像(透过散射介质成像、非视域成像等)、X光衍射鬼成像信息处理等方面开展了一系列的研究。在此基础上,将分别从信息光学成像系统的信源编码优化、复杂信道分析及射线显微应用的角度开展后续工作,促进信息论与光学成像的进一步交叉融合。

2)工作室实验室主要硬件设备及能开展的相关实验研究;

钛宝石飞秒激光系统,可用于开展透过散射介质成像中的光场散射理论机制和实验研究,以及生物医学领域的显微成像实验研究。

高亮度X射线源,可用于开展生物医药、纳米材料、集成电路等领域的纳米显微分析实验研究。

3)工作室主要研究方向;

Ÿ 信息光学成像系统优化理论与实验研究

结合光场高阶关联鬼成像系统能够对目标场景进行图像信息编解码的特点,使用信息理论对其进行研究分析和系统优化,主要包括成像系统的信息理论描述模型研究、系统成像性能分析和极限研究、基于信息理论的编码光场优化、以及基于信息理论发展面向特定任务的成像系统设计理论和方法。

Ÿ 复杂光学信道成像理论与技术研究

以信息光学成像的视角,从信道分析的角度开展以光场透过散射体的成像模型为主的散射光场理论研究,包括散射介质的尺度放缩模型、散射光场相干性演化等,并在此基础上开展物理模型与先验信息融合的透过散射介质成像、非视域成像技术方法研究。

Ÿ X射线计算显微与精密测量研究

将信息光学成像理论与X光计算成像技术相结合,突破X光纳米成像与三维测量核心关键技术,基于高分辨X光计算显微与精密测量实验平台,开展生物医药、纳米材料、集成电路等领域的应用研究。

4)工作室主要研究成果,包括项目、文章、专利等学术成果,以及研究生培养、服务社会等成果;

项目

[1] “高真空TiX射线光源设计”,上海市久测光电科技有限公司,横向项目,30万元

论文

[1] Roadmap on chaos‑inspired imaging technologies (CI2‑Tech), Applied Physics B, 2022.

[2] Far-field super-resolution ghost imaging with a deep neural network constraint, Light: Science & Application, 2022.

[3] Image encryption using spatial nonlinear optics, eLight, 2022.

[4] Single-pixel imaging using physics enhanced deep learning, 2022.

[5] Non-line-of-sight imaging under white-light illumination: a two-step deep learning approach, 2021

[6] BlindNet: an untrained learning approach toward computational imaging with model uncertainty, Journal of Physics D: Applied Physics, 2021.

[7] Temporal characterization of electron dynamics in attosecond XUV and infrared laser fields, Optics Express, 2021.

[8] Spectral polarization camera based on ghost imaging via sparsity constraints, Applied Optics, 2021.

[9] Preconditioned deconvolution method for high-resolution ghost imaging, Photonics Research, 2021.

[10] Deep-learning-based ciphertext-only attack on optical double random phase encryption, Opto-Electronic Advances, 2021.

[11] Two-step-training deep learning framework for computational imaging without physics priors, Optics Express, 2021.

[12] Correspondence Fourier-transform ghost imaging, Physical Reivew A, 2021.

[13] Incoherent imaging through high nonstatic and optically thick turbid media based on neural network, Photonics Research, 2021.

[14] Recovery of the topological charge of a vortex beam propagated through a scattering layer, Applied Optics, 2021.

[15] Single-shot three-dimensional imaging with a scattering layer, Applied Optics, 2021.

[16] Single-Pixel Neutron Imaging with Artificial Intelligence: Breaking the Barrier in Multi-Parameter Imaging, Sensitivity and Spatial Resolution, The Innovation: Cell Press, 2021.

[17] Imaging and positioning through scattering media noninvasively by bi-directional exposure, Journal of Optics, 2021.

[18] Novel magic angle-step state and mechanism for restraining the path ripple of magnetorheological finishing, International Journal of Machine Tools and Manufacture, 2021

[19] Color ghost imaging via sparsity constraint and non-local self-similarity, Chinese Optics Letters, 2021.

[20] Dynamics of the Berezinskii_Kosterlitz-Thouless transition in a photon fluidNature Photonics2020.

[21] Phase imaging with an untrained neural network, Light-Science & Applications, 2020.

[22] Ghost imaging based on Y-net: a dynamic coding and decoding approachOptics Express, 2020.

[23] Experimental investigation of chirped amplitude modulation heterodyne ghost imaging, Optics Express, 2020.

[24] Spectral ghost imaging camera with super-Rayleigh modulator, Optics Communications, 2020.

[25] Fourier-transform ghost imaging with polychromatic light, Journal of Modern Optics, 2020.

[26] Preconditioned generalized orthogonal matching pursuit, EURASIP Journal on Advances in Signal Processing, 2020.

[27] 信息光学成像研究回顾, 现状与展望, 红外与激光工程, 2022.

[28] 中国科学院上海光学精密机械研究所鬼成像理论研究的若干进展, 红外与激光工程, 2021.

[29] X射线傅里叶关联成像中的康普顿散射噪声研究, 红外与激光工程, 2021.

[30] X光超瑞利散斑场傅里叶变换关联成像模拟研究, 光学学报, 2021.

[31] 毛玻璃和体散射介质的散射等效性对比研究, 光学学报, 2021.

[32] X射线及粒子关联成像技术研究进展, 激光与光电子学进展, 2021.

专利

[1] 一种动量编码X射线衍射图样匹配校正方法及其应用,中国专利,202210132136.2(申请)

5)工作室团队、文化等其它需要说明的内容。

工作室现有硕士研究生杨海瑞,朱凯旋,戴安丽,方彤,王大卫,闵启玄,李林昊,薛海涛,苏国宝共9人。课题组科研学习氛围良好,定期开展读书讨论班交流活动;课题组节奏张弛有致,时常开展户外活动。


Background and History

Since the birth of information theory at the middle of last century, to understand, study and optimize optical imaging systems from the viewpoint of information theory has been an important research field of optical imaging. Due to that traditional optical imaging systems acquire image information through the “fixed point-to-point” mapping mode from the object plane to the image plane, which is lacking in "Codec" process of image information, related studies based on information theory are more meaningful in the theoretical sense, while acting as icing on the cake for optimization and design of practical systems so that substantive breakthroughs in new imaging capabilities are difficult to be made. With breakthroughs in modern light-field modulation techniques as well as new-concept ghost imaging techniques in recent years, currently it is able to encode the target image with controllable spatiotemporal fluctuations of light fields during practical ghost imaging process. Combining with modern digital photoelectric detection technologies, ghost imaging systems behave more in line with the modulation-demodulation information-transmission mode than traditional optical imaging. On the other hand, in several scenarios with complex environment condition, the "point-to-point" mapping condition required by traditional imaging can not be satisfied due to the existence of scattering media or barriers, thus it is unable to direct image the target. From the viewpoint of information theory, the transmission channel is strongly disturbed. Hence, how to design the system to extract image information under the complex channel is also an important issue to be addressed by analyzing and optimizing optical imaging systems based on information theory.

Surrounding the core research direction, information optical imaging, the lab has performed a series of studies on optimization of the compressed sensing mode of light-field information in ghost imaging system, imaging through complex channel (imaging through scattering media, non-line-of-sight imaging, etc.) and X-ray diffraction ghost imaging information processing. On these bases, subsequent research will be performed from perspectives including source coding optimization, complex channel analysis and radiographic microscopy applications of information optical imaging systems, boosting the interdisciplinary integration between information theory and optical imaging.

Main hardware equipments in the lab

* Ti: sapphire femtosecond laser system. It can be used to perform theoretical and experimental study on optical scattering in imaging through scattering media, as well as microscopic imaging experimental study in biomedical field.

* High brightness X-ray source. It can be used to perform nanoscale microscopic analysis experiment in fields of biomedicine, nano material, integrated circuit, etc.

Main research directions

(a) Optimization theory and related experimental study for information optical imaging systems.

By combining with the characteristics that the ghost imaging system based on high-order light-field correlation is able to perform "Codec" of image information, information theory will be used to study, analyze and optimize (or design) the system, including studying the information-theoretic description model of imaging systems, analyzing imaging capability and its limit, optimizing encoding light fields based on information theory, and developing information-theoretic theory and method for designing imaging system according to specific tasks.

(b) Theory and technique study for imaging through complex optical information channel

From the viewpoint of information optical imaging, study on optical scattering theory will be performed through optical channel analysis, mainly focusing on the imaging model of light field passing through scatterer or barriers. Specific studies include the theoretical model of scattering media under scaling and coherence evolution of scattered light fields, as well as study of technical methods for imaging through scattering media and non-line-of-sight imaging by combining physical model and prior information.

(c)Research on X-ray computational microscopy and precision measurement

Combining the information optical imaging theory with X-ray computational imaging techniques, researches on key technologies of X-ray nano-imaging and three-dimensional measurement will be performed. Based on the experimental platform for X-ray computational microscopy and precision measurement with high resolution, application studies in fields of biomedicine, nano material and integrated circuit will be carried out.

Main achievements

Programs

1. "Design of high-vacuum Ti-target X-ray source", Shanghai JiuCe Photoelectric Technology Co., Ltd, enterprise sponsored program, 300,000

Papers

[1] Roadmap on chaos‑inspired imaging technologies (CI2‑Tech), Applied Physics B, 2022.

[2] Far-field super-resolution ghost imaging with a deep neural network constraint, Light: Science & Application, 2022.

[3] Image encryption using spatial nonlinear optics, eLight, 2022.

[4] Single-pixel imaging using physics enhanced deep learning, 2022.

[5] Non-line-of-sight imaging under white-light illumination: a two-step deep learning approach, 2021

[6] BlindNet: an untrained learning approach toward computational imaging with model uncertainty, Journal of Physics D: Applied Physics, 2021.

[7] Temporal characterization of electron dynamics in attosecond XUV and infrared laser fields, Optics Express, 2021.

[8] Spectral polarization camera based on ghost imaging via sparsity constraints, Applied Optics, 2021.

[9] Preconditioned deconvolution method for high-resolution ghost imaging, Photonics Research, 2021.

[10] Deep-learning-based ciphertext-only attack on optical double random phase encryption, Opto-Electronic Advances, 2021.

[11] Two-step-training deep learning framework for computational imaging without physics priors, Optics Express, 2021.

[12] Correspondence Fourier-transform ghost imaging, Physical Reivew A, 2021.

[13] Incoherent imaging through high nonstatic and optically thick turbid media based on neural network, Photonics Research, 2021.

[14] Recovery of the topological charge of a vortex beam propagated through a scattering layer, Applied Optics, 2021.

[15] Single-shot three-dimensional imaging with a scattering layer, Applied Optics, 2021.

[16] Single-Pixel Neutron Imaging with Artificial Intelligence: Breaking the Barrier in Multi-Parameter Imaging, Sensitivity and Spatial Resolution, The Innovation: Cell Press, 2021.

[17] Imaging and positioning through scattering media noninvasively by bi-directional exposure, Journal of Optics, 2021.

[18] Novel magic angle-step state and mechanism for restraining the path ripple of magnetorheological finishing, International Journal of Machine Tools and Manufacture, 2021

[19] Color ghost imaging via sparsity constraint and non-local self-similarity, Chinese Optics Letters, 2021.

[20] Dynamics of the Berezinskii_Kosterlitz-Thouless transition in a photon fluidNature Photonics2020.

[21] Phase imaging with an untrained neural network, Light-Science & Applications, 2020.

[22] Ghost imaging based on Y-net: a dynamic coding and decoding approachOptics Express, 2020.

[23] Experimental investigation of chirped amplitude modulation heterodyne ghost imaging, Optics Express, 2020.

[24] Spectral ghost imaging camera with super-Rayleigh modulator, Optics Communications, 2020.

[25] Fourier-transform ghost imaging with polychromatic light, Journal of Modern Optics, 2020.

[26] Preconditioned generalized orthogonal matching pursuit, EURASIP Journal on Advances in Signal Processing, 2020.

[27]  Review, current status and prospect of researches on information optical imaging, Infrared and Laser Engineering, 2022. (in Chinese)

[28]  Some research progress on the theoretical study of ghost imaging in Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences. Infrared and Laser Engineering, 2021. (in Chinese)

[29]  Research on Compton scattering noise in the X-ray Fourier-transform ghost imaging, Infrared and Laser Engineering, 2021. (in Chinese)

[30]  Simulation Research on X-Ray Fourier-Transform Ghost Imaging Using Super-Rayleigh Speckle Field, Acta Optica Sinica, 2021. (in Chinese)

[31]  Comparison of Scattering Equivalence Between Ground Glass and Volume Scattering Media, Acta Optica Sinica, 2021. (in Chinese)

[32]  Progress on Ghost Imaging with X-Ray and Particles, Laser & Optoelectronics Progress, 2021. (in Chinese)

Patents

1. A matching correction method for momentum-coded X-ray diffraction pattern and its application, Chinese patent, 202210132136.2 (in application)

Student members

There are nine postgraduate students in the group, Hairui Yang, Kaixuan Zhu, Anli Dai, Tong Fang, Dawei Wang, Qixuan Min, Linhao Li, Haitao Xue and Guobao Su. The group has a good atmosphere for scientific research and learning, for example, reading discussion meeting is held regularly; also, rhythmic relaxation such as outdoor activities is often conducted.

工作室相关领域领域及成果:


  

X光计算显微研究。(1) X光傅里叶变换强度关联成像纳米显微仪样机;(2) 实验散斑图;(3)DNA进行成像的模拟结果,(b)仿真所用DNA图像,(c)仿真得到散斑图,(d)重构DNA图像,(e)通过散斑图得到的DNA衍射谱图像。


信息光学单次曝光高维光场成像相机系统。(1)成像系统原理示意;(2)相机系统外场实验得到自然场景的多光谱图像及彩色合成图像;(3)利用单次曝光获取高维信息的特点,通过高维光场空间可辨识度实现超衍射分辨成像。


强度关联成像雷达系统。(1)成像系统原理示意,(2)成像系统对真实目标的动态追踪及成像,且不同颜色代表无人机处于不同距离。


透过散射介质成像研究。(1)左:透过厚散射体成像的实验装置图,右:使用深度学习对简单图像仿真重构结果及对分辨率板的实验结果;(2)对复杂自然场景物体的成像结果,(a)探测散射光信号分布,(b)真实图像,(c)算法重构图像


Copyright © 中国科学院大学版权所有